Issue 47, 2018, Issue in Progress

Microwave assisted robust aqueous synthesis of Mn2+-doped CdSe QDs with enhanced electronic properties

Abstract

A robust doping strategy of Mn2+ ions in CdSe QDs has been developed in aqueous medium with mild microwave irradiation using the short-chain capping ligand 3-MPA. The concentration of the dopant is varied stoichiometrically in order to measure its effect on the conductivity of QD solids for further potential applications in the future. The synthesis parameters of CdSe QDs have been optimized to produce a uniform size among various samples to decouple the doping dependent conductivity from their bandgap. Doping yield is measured extensively by several studies like EDS, ICP-AES, and XPS. The layer-by-layer electrostatic assembly method has been exploited to fabricate thin film devices. IV characteristics reveal that the electrical conductivity of 2% Mn2+-doped CdSe QD devices is enhanced on the order of ∼104 compared to its undoped counterpart. The “auto-ionization” of Mn2+ dopants in CdSe QDs due to the quantum confinement effect is one reason for this jump in conductivity as described in the Poole–Frenkel effect. STM measurements of the monolayer QD device shows its resistive switching properties. Importantly, the threshold voltage of switching decreased with the increase of doping concentration. All these results confirm the efficiency of Mn2+ doping in zinc-blende CdSe QDs in aqueous medium, by avoiding the “self-purification” effect of CdSe QDs, and their further application as a potential candidate for future memristor devices.

Graphical abstract: Microwave assisted robust aqueous synthesis of Mn2+-doped CdSe QDs with enhanced electronic properties

Supplementary files

Article information

Article type
Paper
Submitted
27 Apr 2018
Accepted
19 Jul 2018
First published
26 Jul 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 26771-26781

Microwave assisted robust aqueous synthesis of Mn2+-doped CdSe QDs with enhanced electronic properties

S. K. Meladom, S. Arackal, A. Sreedharan, S. Sagar and B. C. Das, RSC Adv., 2018, 8, 26771 DOI: 10.1039/C8RA03631D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements