Issue 44, 2018, Issue in Progress

Evaluation of disinfection by-products (DBPs) formation potential in ANAMMOX effluents

Abstract

Disinfection by-products (DBPs), major health concerns in the potable reuse of municipal wastewater effluent, are process-related in wastewater treatment systems. Anammox is a promising and increasingly-applied technology for nitrogen removal in wastewater. In this study, the relationship between DBP formation potential and the anammox process has been investigated based on a lab-scale sequencing batch reactor (SBR). Excitation and emission matrix (EEM) fluorescence spectroscopy was employed to identify the compositions of the DBP precursors. The results showed that the effluents from the anammox SBR could yield both carbonaceous and nitrogenous DBPs after chlorination. Trichloromethane (TCM) was the dominant product among all DBPs detected. The anammox effluent has a low specific TCM formation potential of 0.778 μmol/mmol C and a trichloronitromethane (TCNM) formation potential of 0.0725 μmol/mmol C, leading to a TCM and TCNM formation potential ratio of 10.7. We found that substrate utilization of anammox did not enhance DBP yields, and the DBP formation potential decreased after 10 hour starvation. High pH conditions stimulated the production of TCM precursors in the anammox reactor. Humic acid-like and protein-like substances were identified in the EEM spectra of anammox effluents.

Graphical abstract: Evaluation of disinfection by-products (DBPs) formation potential in ANAMMOX effluents

Supplementary files

Article information

Article type
Paper
Submitted
28 Apr 2018
Accepted
28 Jun 2018
First published
12 Jul 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 25133-25140

Evaluation of disinfection by-products (DBPs) formation potential in ANAMMOX effluents

S. Wang, J. Fu, H. Yang, B. Zhang, X. Shi and J. Zuo, RSC Adv., 2018, 8, 25133 DOI: 10.1039/C8RA03663B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements