A theoretical study of formaldehyde adsorption and decomposition on a WC (0001) surface†
Abstract
A lot of research attention has been paid to designing and exploring efficient adsorbents for HCHO adsorption and decomposition. Herein, we have demonstrated a highly active material, WC, for HCHO adsorption through first-principles calculations. Due to the exposed three-coordinated W atoms (W3c) of the WC (0001) surface, HCHO molecules can be settled on the WC (0001) surface through newly formed OF–W3c and/or CF–W3c bonds, forming different adsorption configurations. When settled on the WC (0001) surface, the molecular configuration of the HCHO molecule and the corresponding CF–HF and CF–OF bond lengths would be greatly changed. Due to the enlarged CF–HF and CF–OF bond lengths, the adsorbed HCHO molecules tend to dissociate through two possible pathways; these are the two-step CF–HF bond scission or the one-step CF–OF bond scission. The former results in two H adatoms and a CO molecule chemisorbed to the surface and the latter produces an O adatom and a CH2 group on the surface. Further Cl-NEB calculations demonstrate that the pre-adsorbed O atom has little influence on the first CF–HF bond scission and the CF–OF bond scission, while promoting the second CF–HF bond scission. Considering the dissociative products, H and CH2 have the potential to couple into a CH3 group (or even a CH4 molecule) and two CH2 groups may couple into a C2H4 molecule. In the end, we propose that OH ions may couple with the dissociative products of HCHO, so an alkali solution could be used to post-process the WC (0001) surface to restore its surface active sites. These results demonstrated the potential of WC in HCHO sensing and abatement.