Issue 49, 2018, Issue in Progress

Carbon supported olivine type phosphate framework: a promising electrocatalyst for sensitive detection of dopamine

Abstract

In this study, a layered olivine-type LiMnPO4/functionalized-multiwall carbon nanotube (f-MWCNTs) composite is used as an electrochemically active material for the real-time detection of dopamine. A wet-chemical ultrasonication process is used to combine LiMnPO4 with f-MWCNTs at room temperature. The composite was subjected to various structural, morphological and electrochemical studies. The blending of olivine-type LiMnPO4 into the f-MWCNTs is revealed by TEM analysis. The electrochemical activities of the LiMnPO4/f-MWCNTs composite are systematically investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) for the real-time detection of dopamine. Furthermore, the applicability of the as prepared LiMnPO4/f-MWCNTs composite was extended for the detection of human serum (E48) and rat brain-serum (C7) samples with satisfactory recoveries for the real-time applications. All these studies revealed that the layered olivine-type LiMnPO4/f-MWCNTs composite is a potential candidate in the field of electrochemical sensing.

Graphical abstract: Carbon supported olivine type phosphate framework: a promising electrocatalyst for sensitive detection of dopamine

Supplementary files

Article information

Article type
Paper
Submitted
12 Jun 2018
Accepted
13 Jul 2018
First published
03 Aug 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 27775-27785

Carbon supported olivine type phosphate framework: a promising electrocatalyst for sensitive detection of dopamine

R. Nehru and S. Chen, RSC Adv., 2018, 8, 27775 DOI: 10.1039/C8RA05034A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements