Issue 48, 2018, Issue in Progress

Theoretical investigations on azole-fused tricyclic 1,2,3,4-tetrazine-2-oxides

Abstract

Fused compounds, a unique class of large conjugate structures, have emerged as prime candidates over traditional nitrogen-rich mono-ring or poly-ring materials. Meanwhile, compounds containing catenated nitrogen chains have also attracted attention from scientists due to their high heats of formation. On the other hand, the azoxy [–N[double bond, length as m-dash]N(O)–] moiety has been found to increase density effectively in the molecular structure of compounds. Therefore, combining fused heterocyclic organic skeletons with the azoxy moiety can be regarded as an effective method for increasing the density and heat of formation, which results in substantial increase in detonation properties. Based on the above-mentioned considerations, in this study, a series of new non-hydrogen-containing 5/6/5 fused ring molecules with azoxy moiety structures are designed. Furthermore, their properties as potential high-energy-density materials, including their density, heats of formation, detonation properties, and impact sensitivity, have been extensively evaluated using thermodynamic calculations and density functional theory. Among the investigated compounds, 1,3,8,10-tetranitrodiimidazo[1,5-d:5′,1′-f][1,2,3,4]tetrazine 5-oxide (B), 1,10-dinitrobis([1,2,3]triazolo)[1,5-d:5′,1′-f][1,2,3,4]tetrazine 5-oxide (C) and 2,9-dinitrobis([1,2,4]triazolo)[1,5-d:5′,1′-f][1,2,3,4]tetrazine 5-oxide (D) display remarkable stabilities and are predicted to be high-performance energetic materials due to their high density (>1.94 g cm−3), detonation velocity (>9616 m s−1), and detonation pressure (>41.1 GPa). In addition, our design strategy, which combines the azoxy moiety and fused tricyclic skeleton to construct nitrogen-rich molecular structures with high density and positive heat of formation, is a valuable approach for developing novel high-energy-density materials with excellent performance and stability.

Graphical abstract: Theoretical investigations on azole-fused tricyclic 1,2,3,4-tetrazine-2-oxides

Supplementary files

Article information

Article type
Paper
Submitted
20 Jun 2018
Accepted
16 Jul 2018
First published
31 Jul 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 27235-27245

Theoretical investigations on azole-fused tricyclic 1,2,3,4-tetrazine-2-oxides

T. Fei, Y. Du, C. He and S. Pang, RSC Adv., 2018, 8, 27235 DOI: 10.1039/C8RA05274C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements