Issue 50, 2018

Layer charge robust delamination of organo-clays

Abstract

To date delamination of organo-clays is restricted to highly charged, vermiculite-type layered silicates (e.g. n-butylammonium vermiculites) while – counterintuitively – low charged, smectite-type layered silicates do not delaminate although their Coulomb interactions are much weaker. Guided by previous findings, we now identified organo-cations that allowed for extending the delamination of organo clays to charge densities in the regime of low charged smectites as well. Upon intercalation of protonated amino-sugars like N-methyl-D-glucamine (meglumine) robust delamination of 2 : 1 layered silicates via repulsive osmotic swelling in water is achieved. This process is stable over a wide range of charge densities spanning from smectites (layer charge x ∼ 0.3 charges per formula unit Si4O10F2, p.f.u.) to vermiculites (x ∼ 0.7 p.f.u.). It is evidenced that a combination of first, a sufficiently large charge equivalent area (bulkiness) of meglumine with second, a significant hydrophilicity of meglumine leads to swelling above a threshold d-spacing of ≳17.5 Å in moist air (98% r.h.). Hereby, electrostatic attraction is critically weakened, causing the onset of repulsive osmotic swelling which leads to utter delamination. Moreover, meglumine renders delamination tolerant to charge heterogeneities typically found in natural and synthetic clays.

Graphical abstract: Layer charge robust delamination of organo-clays

Supplementary files

Article information

Article type
Paper
Submitted
21 Jun 2018
Accepted
04 Aug 2018
First published
13 Aug 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 28797-28803

Layer charge robust delamination of organo-clays

M. Daab, N. J. Eichstaedt, A. Edenharter, S. Rosenfeldt and J. Breu, RSC Adv., 2018, 8, 28797 DOI: 10.1039/C8RA05318A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements