Issue 48, 2018, Issue in Progress

Novel Mn4+-activated LiLaMgWO6 far-red emitting phosphors: high photoluminescence efficiency, good thermal stability, and potential applications in plant cultivation LEDs

Abstract

Double perovskite-based LiLaMgWO6:Mn4+ (LLMW:Mn4+) red phosphors were synthesized by traditional solid-state route under high temperature, and they showed bright far-red emission under excitation of 344 nm. The crystal structure, luminescence performance, internal quantum efficiency, fluorescence decay lifetimes, and thermal stability were investigated in detail. All samples exhibited far-red emissions around 713 nm due to the 2Eg4A2g transition of Mn4+ under excitation of near-ultraviolet and blue light, and the optimal doping concentration of Mn4+ was about 0.7 mol%. The CIE chromaticity coordinates of the LLMW:0.7% Mn4+ sample were (0.7253, 0.2746), and they were located at the border of the chromaticity diagram, indicating that the phosphors had high color purity. Furthermore, the internal quantum efficiency of LLMW:0.7% Mn4+ phosphors reached up to 69.1%, which was relatively higher than those of the reported Mn4+-doped red phosphors. Moreover, the sample displayed good thermal stability; the emission intensity of LLMW:0.7% Mn4+ phosphors at 423 K was 49% of the initial value at 303 K, while the activation energy was 0.39 eV. Importantly, there was a broad spectral overlap between the emission band of LLMW:Mn4+ phosphors and the absorption band of phytochrome PFR under near-ultraviolet light. All of these properties and phenomena illustrate that the LLMW:Mn4+ phosphors are potential far-red phosphors for applications in plant cultivation LEDs.

Graphical abstract: Novel Mn4+-activated LiLaMgWO6 far-red emitting phosphors: high photoluminescence efficiency, good thermal stability, and potential applications in plant cultivation LEDs

Article information

Article type
Paper
Submitted
03 Jul 2018
Accepted
16 Jul 2018
First published
30 Jul 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 27144-27151

Novel Mn4+-activated LiLaMgWO6 far-red emitting phosphors: high photoluminescence efficiency, good thermal stability, and potential applications in plant cultivation LEDs

J. Liang, L. Sun, B. Devakumar, S. Wang, Q. Sun, H. Guo, B. Li and X. Huang, RSC Adv., 2018, 8, 27144 DOI: 10.1039/C8RA05669B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements