Issue 64, 2018, Issue in Progress

Simultaneous improvement in electrical conductivity and Seebeck coefficient of PEDOT:PSS by N2 pressure-induced nitric acid treatment

Abstract

As a thermoelectric (TE) material suited to applications for recycling waste-heat into electricity through the Seebeck effect, poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) is of great interest. Our research demonstrates a comprehensive study of different post-treatment methods with nitric acid (HNO3) to enhance the thermoelectric properties of PEDOT:PSS. The optimum conditions are obtained when PEDOT:PSS is treated with HNO3 for 10 min at room temperature followed by passing nitrogen gas (N2) with a pressure of 0.2 MPa. Upon this treatment, PEDOT:PSS changes from semiconductor-like behaviour to metal-like behaviour, with a simultaneous enhancement in the electrical conductivity and Seebeck coefficient at elevated temperature, resulting in an increase in the thermoelectric power factor from 0.0818 to 94.3 μW m−1 K−2 at 150 °C. The improvement in the TE properties is ascribed to the combined effects of phase segregation and conformational change of the PEDOT due to the weakened coulombic attraction between PEDOT and PSS chains by nitric acid as well as the pressure of the N2 gas as a mechanical means.

Graphical abstract: Simultaneous improvement in electrical conductivity and Seebeck coefficient of PEDOT:PSS by N2 pressure-induced nitric acid treatment

Supplementary files

Article information

Article type
Paper
Submitted
18 Jul 2018
Accepted
24 Sep 2018
First published
30 Oct 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 36563-36570

Simultaneous improvement in electrical conductivity and Seebeck coefficient of PEDOT:PSS by N2 pressure-induced nitric acid treatment

M. T. Zar Myint, M. Hada, H. Inoue, T. Marui, T. Nishikawa, Y. Nishina, S. Ichimura, M. Umeno, A. K. Ko Kyaw and Y. Hayashi, RSC Adv., 2018, 8, 36563 DOI: 10.1039/C8RA06094K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements