Issue 64, 2018, Issue in Progress

Preparation and characterization of a novel nanofiltration membrane with chlorine-tolerant property and good separation performance

Abstract

High water flux, good separation property and excellent chlorine resistance are crucial factors affecting the development of nanofiltration (NF) membranes. To obtain these properties, NF membranes were fabricated via interfacial polymerization using m-xylylenediamine (m-XDA) and polyethyleneimine (PEI) as aqueous monomers. By controlling the concentration ratio of m-XDA and PEI in the aqueous solution, it was found that the addition of PEI to the aqueous solution can increase the rejection of the NF membrane to magnesium chloride (MgCl2) and magnesium sulfate (MgSO4) from 18.3%, 54.5% to 84.4%, 94.1%, respectively. Meanwhile, the rejection to sodium sulphate (Na2SO4) and sodium chloride (NaCl) remain essentially unchanged. On the other hand, the addition of m-XDA to the aqueous solution can improve the chlorine resistance of the NF membrane, but it decreased the water flux of NF membrane. Sodium hypochlorite (NaClO) solution was used to evaluate chlorine resistance of NF membranes. After 10 000 ppm h NaClO immersion, the rejections to Na2SO4 of NF membranes prepared from the pure m-XDA and the blend of m-XDA and PEI were basically unchanged and the water flux increased. In conclusion, the obtained membranes not only exhibited good separation performance but also had good chlorine resistance.

Graphical abstract: Preparation and characterization of a novel nanofiltration membrane with chlorine-tolerant property and good separation performance

Article information

Article type
Paper
Submitted
05 Sep 2018
Accepted
16 Oct 2018
First published
29 Oct 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 36430-36440

Preparation and characterization of a novel nanofiltration membrane with chlorine-tolerant property and good separation performance

Y. Liu, B. Lin, W. Liu, J. Li, C. Gao and Q. Pan, RSC Adv., 2018, 8, 36430 DOI: 10.1039/C8RA06755D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements