Issue 56, 2018, Issue in Progress

From grass to battery anode: agricultural biomass hemp-derived carbon for lithium storage

Abstract

Biomass-derived carbon, as a low-cost material source, is an attractive choice to prepare carbon materials, thus providing an alternative to by-product and waste management. Herein, we report the preparation of carbon from hemp stem as a biomass precursor through a simple, low-cost, and environment-friendly method with using steam as the activating agent. The hemp-derived carbon with a hierarchically porous structure and a partial graphitization in amorphous domains was developed, and for the first time, it was applied as an anode material for lithium-ion battery. Natural hemp itself delivers a reversible capacity of 190 mA h g−1 at a rate of 300 mA g−1 after 100 cycles. Ball-milling of hemp-derived carbon is further designed to control the physical properties, and consequently, the capacity of milled hemp increases to 300 mA h g−1 along with excellent rate capability of 210 mA h g−1 even at 1.5 A g−1. The milled hemp with increased graphitization and well-developed meso-porosity is advantageous for lithium diffusion, thus enhancing electrochemical performance via both diffusion-controlled intercalation/deintercalation and surface-limited adsorption/desorption. This study not only demonstrates the application of hemp-derived carbon in energy storage devices, but also guides a desirable structural design for lithium storage and transport.

Graphical abstract: From grass to battery anode: agricultural biomass hemp-derived carbon for lithium storage

Supplementary files

Article information

Article type
Paper
Submitted
20 Aug 2018
Accepted
03 Sep 2018
First published
18 Sep 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 32231-32240

From grass to battery anode: agricultural biomass hemp-derived carbon for lithium storage

J. H. Um, C. Ahn, J. Kim, M. Jeong, Y. Sung, Y. Cho, S. Kim and W. Yoon, RSC Adv., 2018, 8, 32231 DOI: 10.1039/C8RA06958A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements