Toughening of POSS–MPS composites with low dielectric constant prepared with structure controllable micro/mesoporous nanoparticles
Abstract
In this work, we developed a modified calcination and extraction method to obtain controllable micro/mesoporous nanoparticle samples POSS–MPS, which were synthesized through glycidyl polyhedral oligomeric silsesquioxane (G-POSS) grafting with aminopropyl-functionalized mesoporous silica (AP-MPS). The POSS–MPS was introduced into the cyanate ester (CE) matrix to optimize the dielectric properties and enhance the toughness of the POSS–MPS/CE nanocomposite. The structure of the hybrid was characterized by FTIR and SEM. The dispersion properties, mechanical properties, dielectric properties and thermal performance were also studied. The results showed that both the C-POSS–MPS and E-POSS–MPS uniformly distribute in the CE matrix with the content of 0.5–4 wt%. The impact strength increased 52% and 60% separately with 2 wt% C-POSS–MPS and E-POSS–MPS addition respectively. The introduction of E-POSS–MPS particles can significantly decrease the dielectric loss value of the POSS–MPS/CE composites to 0.00498, which is of potential in wave transparent composites and structures.