Issue 64, 2018, Issue in Progress

Crystal structures of transition metal pernitrides predicted from first principles

Abstract

We have extensively explored the stable crystal structures of early-transition metal pernitrides (TMN2, TM = Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, and Ta) at ambient and high pressures using effective CALYPSO global structure search algorithm in combination with first-principles calculations. We identified for the first time the ground-state structures of MnN2, TaN2, NbN2, VN2, ZrN2, and HfN2 pernitrides, and proposed their synthesis pressures. All predicted crystal structures contain encapsulated N2 dumbbells in which the two N atoms are singly bonded to a [N2]4− pernitride unit utilizing the electrons transferred from the transition metals. The strong nature of the single dinitrogen bond and transition metal–nitrogen charge transfer induce extraordinary mechanic properties in the predicted transition metal pernitrides including large bulk modulus and high Vickers hardness. Among the predictions the hardness of MnN2 is 36.6 GPa, suggesting that it is potentially a hard material. The results obtained in the present study are important to the understanding of structure–property relationships in transition metal pernitrides and will hopefully encourage future synthesis of these technologically important materials.

Graphical abstract: Crystal structures of transition metal pernitrides predicted from first principles

Supplementary files

Article information

Article type
Paper
Submitted
20 Sep 2018
Accepted
19 Oct 2018
First published
26 Oct 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 36412-36421

Crystal structures of transition metal pernitrides predicted from first principles

R. Yu, E. Sun, L. Jiao, Y. Cai, H. Wang and Y. Yao, RSC Adv., 2018, 8, 36412 DOI: 10.1039/C8RA07814A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements