Issue 65, 2018

Optimized cesium and potassium ion-exchanged zeolites A and X granules for biogas upgrading

Abstract

Partially ion-exchanged zeolites A and X binderless granules were evaluated for CO2 separation from CH4. The CO2 adsorption capacity and CO2-over-CH4 selectivity of binderless zeolites A and X granules were optimized by partial exchange of cations with K+ and Cs+, while retaining the mechanical strength of 1.3 MPa and 2 MPa, respectively. Single gas CO2 and CH4 adsorption isotherms were recorded on zeolites A and X granules and used to estimate the co-adsorption of CO2–CH4 using ideal adsorbed solution theory (IAST). The IAST co-adsorption analysis showed that the partially ion-exchanged binderless zeolites A and X granules had a high CO2-over-CH4 selectivity of 1775 and 525 respectively, at 100 kPa and 298 K. Optimally ion-exchanged zeolite X granules retained 97% of CO2 uptake capacity, 3.8 mmol g−1, after 5 breakthrough adsorption–desorption cycles while for zeolite A ion-exchanged granules the reduction in CO2 uptake capacity was found to be 18%; CO2 uptake capacity of 3.4 mmol g−1. The mass transfer analysis of breakthrough experimental data showed that the ion-exchanged zeolite X had offered a higher mass transfer coefficient, (κ) through the adsorption column compared to zeolite A; 0.41 and 0.13 m s−1 for NaK4.5Cs0.3X and CaK2.5Cs0.2A, respectively.

Graphical abstract: Optimized cesium and potassium ion-exchanged zeolites A and X granules for biogas upgrading

Supplementary files

Article information

Article type
Paper
Submitted
26 Sep 2018
Accepted
26 Oct 2018
First published
06 Nov 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 37277-37285

Optimized cesium and potassium ion-exchanged zeolites A and X granules for biogas upgrading

K. Narang, K. Fodor, A. Kaiser and F. Akhtar, RSC Adv., 2018, 8, 37277 DOI: 10.1039/C8RA08004F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements