Issue 72, 2018, Issue in Progress

Performance, process kinetics and functional microbial community of biocatalyzed electrolysis-assisted anaerobic baffled reactor treating carbohydrate-containing wastewater

Abstract

In this study, an anaerobic baffled reactor (ABR) coupled with a microbial electrolysis cell (MEC) was set up to treat carbohydrate-containing wastewater at 55 ± 1 °C. The MEC was employed to accelerate the degradation of volatile fatty acids (VFAs). The removal of chemical oxygen demand (COD) and production of methane and the corresponding kinetics were determined for different organic load rates (OLRs). The highest COD removal rate was 95.8% at an OLR of 7.0 kg COD m−3 d−1, but it declined to 90.4% when the OLR was 19.4 kg COD m−3 d−1 and finally stabilized at 65.3% when the OLR was increased to 34.3 kg COD m−3 d−1. The volumetric production of methane was 1.5 L (L−1 d−1) when the OLR was 7.0 kg COD m−3 d−1 and increased to 4.1 L (L−1 d−1) at an OLR of 34.3 kg COD m−3 d−1, when the methane yield stabilized at 0.20–0.25 L g−1 CODremoved. The kinetics and predictions according to the Stover–Kincannon and Van der Meer–Heertjes models closely agreed with the experimental data for the removal of COD and volumetric production of methane, respectively. An analysis of the microbial community suggested that hydrolytic bacteria, syntrophic fatty acid-oxidizing bacteria (SFOB), exoelectrogens and hydrogenotrophic methanogens achieved a significant synergistic effect and enhanced the degradation of VFAs, which made the thermophilic anaerobic system stable and efficient at high OLRs.

Graphical abstract: Performance, process kinetics and functional microbial community of biocatalyzed electrolysis-assisted anaerobic baffled reactor treating carbohydrate-containing wastewater

Article information

Article type
Paper
Submitted
17 Oct 2018
Accepted
21 Nov 2018
First published
10 Dec 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 41150-41162

Performance, process kinetics and functional microbial community of biocatalyzed electrolysis-assisted anaerobic baffled reactor treating carbohydrate-containing wastewater

T. Wang, C. Li and G. Zhu, RSC Adv., 2018, 8, 41150 DOI: 10.1039/C8RA08590K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements