Issue 71, 2018

High-performance yttrium-iron alloy doped Pt-free catalysts on graphene for hydrogen evolution

Abstract

Research into the preparation and application of metal/graphene nanocomposite materials is an important issue in the field of graphene applications. Metal nanomaterials and graphene materials have many excellent properties and have been perfectly combined into metal/graphene nanocomposite materials. These offer the high catalytic activity of metal nanomaterials and the high specific surface area and favorable electrical conductivity of graphene. The unique advantages can produce synergistic effects and can significantly improve the overall performance of the composite materials. This gives the metal/graphene nanocomposite materials excellent application prospects for hydrogen evolution. Here, we report the preparation of yttrium-doped palladium/iron on graphene (Pd/YFeO3/GC) using a simple and efficient method. The catalytic performance of the Pd/YFeO3/GC nanocomposites for water electrolysis and hydrogen production was evaluated. The results show that the overpotential for the hydrogen evolution reaction at −10 mA cm−2 is only 15 mV, which is competitive with Pt/C catalysts. The Pd/YFeO3/GC is highly active for hydrogen evolution with an onset potential of −8 mV in 0.5 M H2SO4 solution and a Tafel slope of 37 mV dec−1 with a Pd loading of only 20 μgPd cm−2. These results clearly demonstrated that Pd/YFeO3/GC is an excellent catalyst for hydrogen evolution.

Graphical abstract: High-performance yttrium-iron alloy doped Pt-free catalysts on graphene for hydrogen evolution

Article information

Article type
Paper
Submitted
28 Oct 2018
Accepted
29 Nov 2018
First published
06 Dec 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 40866-40872

High-performance yttrium-iron alloy doped Pt-free catalysts on graphene for hydrogen evolution

P. Zhu, D. Lyu and P. K. Shen, RSC Adv., 2018, 8, 40866 DOI: 10.1039/C8RA08922A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements