Issue 17, 2018

GO-guided direct growth of highly oriented metal–organic framework nanosheet membranes for H2/CO2 separation

Abstract

Highly oriented, ultrathin metal–organic framework (MOF) membranes are attractive for practical separation applications, but the scalable preparation of such membranes especially on standard tubular supports remains a huge challenge. Here we report a novel bottom-up strategy for directly growing a highly oriented Zn2(bIm)4 (bIm = benzimidazole) ZIF nanosheet tubular membrane, based on graphene oxide (GO) guided self-conversion of ZnO nanoparticles (NPs). Through our approach, a thin layer of ZnO NPs confined between a substrate and a GO ultrathin layer self-converts into a highly oriented Zn2(bIm)4 nanosheet membrane. The resulting membrane with a thickness of around 200 nm demonstrates excellent H2/CO2 gas separation performance with a H2 performance of 1.4 × 10−7 mol m−2 s−1 Pa−1 and an ideal separation selectivity of about 106. The method can be easily scaled up and extended to the synthesis of other types of Zn-based MOF nanosheet membranes. Importantly, our strategy is particularly suitable for the large-scale fabrication of tubular MOF membranes that has not been possible through other methods.

Graphical abstract: GO-guided direct growth of highly oriented metal–organic framework nanosheet membranes for H2/CO2 separation

Supplementary files

Article information

Article type
Edge Article
Submitted
08 Nov 2017
Accepted
01 Apr 2018
First published
02 Apr 2018
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2018,9, 4132-4141

GO-guided direct growth of highly oriented metal–organic framework nanosheet membranes for H2/CO2 separation

Y. Li, H. Liu, H. Wang, J. Qiu and X. Zhang, Chem. Sci., 2018, 9, 4132 DOI: 10.1039/C7SC04815G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements