Issue 8, 2018

Microhydration of PAH+ cations: evolution of hydration network in naphthalene+-(H2O)n clusters (n ≤ 5)

Abstract

The interaction of polycyclic aromatic hydrocarbon molecules with water (H2O = W) is of fundamental importance in chemistry and biology. Herein, size-selected microhydrated naphthalene cation nanoclusters, Np+-Wn (n ≤ 5), are characterized by infrared photodissociation (IRPD) spectroscopy in the C–H and O–H stretch range to follow the stepwise evolution of the hydration network around this prototypical PAH+ cation. The IRPD spectra are highly sensitive to the hydration structure and are analyzed by dispersion-corrected density functional theory calculations (B3LYP-D3/aug-cc-pVTZ) to determine the predominant structural isomers. For n = 1, W forms a bifurcated CH⋯O ionic hydrogen bond (H-bond) to two acidic CH protons of the bicyclic ring. For n ≥ 2, the formation of H-bonded solvent networks dominates over interior ion solvation, because of strong cooperativity in the former case. For n ≥ 3, cyclic Wn solvent structures are attached to the CH protons of Np+. However, while for n = 3 the W3 ring binds in the CH⋯O plane to Np+, for n ≥ 4 the cyclic Wn clusters are additionally stabilized by stacking interactions, leading to sandwich-type configurations. No intracluster proton transfer from Np+ to the Wn solvent is observed in the studied size range (n ≤ 5), because of the high proton affinity of the naphthyl radical compared to Wn. This is different from microhydrated benzene+ clusters, (Bz-Wn)+, for which proton transfer is energetically favorable for n ≥ 4 due to the much lower proton affinity of the phenyl radical. Hence, because of the presence of polycyclic rings, the interaction of PAH+ cations with W is qualitatively different from that of monocyclic Bz+ with respect to interaction strength, structure of the hydration shell, and chemical reactivity. These differences are rationalized and quantified by quantum chemical analysis using the natural bond orbital (NBO) and noncovalent interaction (NCI) approaches.

Graphical abstract: Microhydration of PAH+ cations: evolution of hydration network in naphthalene+-(H2O)n clusters (n ≤ 5)

Supplementary files

Article information

Article type
Edge Article
Submitted
01 Dec 2017
Accepted
24 Jan 2018
First published
24 Jan 2018
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2018,9, 2301-2318

Microhydration of PAH+ cations: evolution of hydration network in naphthalene+-(H2O)n clusters (n ≤ 5)

K. Chatterjee and O. Dopfer, Chem. Sci., 2018, 9, 2301 DOI: 10.1039/C7SC05124G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements