Issue 24, 2018

Engineering of a near-infrared fluorescent probe for real-time simultaneous visualization of intracellular hypoxia and induced mitophagy

Abstract

Mitophagy induced by hypoxia plays an important role in regulating cellular homeostasis via the removal of dysfunctional mitochondria in the lysosomal degradation pathway, which results in physiological changes in the mitochondria, such as the pH, polarity and viscosity. However, the lack of an effective method for imaging of both the hypoxic microenvironment and the resulting variable mitochondria limits the visualization of hypoxia-induced mitophagy. Based on the specific mitochondrial pH changes during the hypoxia-induced mitophagy process, we have reported a near-infrared fluorescent probe (NIR-HMA) for real-time simultaneous visualization of the hypoxic microenvironment and the subsequent mitophagy process in live cells. NIR-HMA selectively accumulated in the hypoxic mitochondria in the NIR-MAO form, emitting at 710 nm, and then transformed into NIR-MAOH, emitting at 675 nm, in the acidified mitochondria-containing autolysosomes. Importantly, by smartly tethering the hypoxia-responsive group to the hydroxyl group of the NIR-fluorochrome, which shows ratiometric pH changes, NIR-HMA can differentiate between different levels of the hypoxic microenvironment and mitophagy. Furthermore, using NIR-HMA, we could track the complete mitophagy process from the mitochondria to the autolysosomes and visualize mitophagy caused only by hypoxia both in cancer cells and normal cells. Finally, NIR-HMA was applied to investigate the role that mitophagy plays in the hypoxic microenvironment via the cycling hypoxia-reoxygenation model. We observed a decreased fluorescence ratio after reoxygenation and a further increased mitophagy level after hypoxia was induced again, suggesting that mitophagy might be a self-protective process that allows cells to adapt to hypoxia. Our work may provide an attractive way for real-time visualization of relevant physiological processes in hypoxic microenvironments.

Graphical abstract: Engineering of a near-infrared fluorescent probe for real-time simultaneous visualization of intracellular hypoxia and induced mitophagy

Supplementary files

Article information

Article type
Edge Article
Submitted
13 Apr 2018
Accepted
10 May 2018
First published
15 May 2018
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2018,9, 5347-5353

Engineering of a near-infrared fluorescent probe for real-time simultaneous visualization of intracellular hypoxia and induced mitophagy

Y. Liu, L. Teng, L. Chen, H. Ma, H. Liu and X. Zhang, Chem. Sci., 2018, 9, 5347 DOI: 10.1039/C8SC01684D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements