Issue 12, 2018

A plasmonic interfacial evaporator for high-efficiency solar vapor generation

Abstract

The increasing energy and environmental concerns have spurred enormous research interest towards developing various renewable energy and sustainable environmental solutions. Photothermal conversion for interfacial solar vapor generation is a promising, green energy technology and efficient route for desalination and purification of seawater, i.e. for those parts where freshwater shortage is a severe concern and clean energy is not available. Eco-friendly, highly efficient and low-cost interfacial evaporators are highly desirable for the practical and widespread application of this technology. In this work, we have demonstrated a novel interfacial evaporator employing Cu9S5 nanonets with heterogeneous hexagonal holes as the photothermal conversion material and a microporous poly(vinylidene fluoride) membrane (PVDFM) as the supporting material. The Cu9S5/PVDFM evaporator displays a broadband (from 250 to 2000 nm) and large (∼91.7%) solar absorptance. The porous structures of Cu9S5 nanonets and PVDFM facilitate the water transportation, and the large optical absorption of Cu9S5/PVDFM converts most of the solar energy to thermal energy, producing water vapor with high efficiency. The Cu9S5/PVDFM evaporator exhibits solar vapor generation efficiencies of 80.2 ± 0.6% and 91.5 ± 1.1% under one-sun and four-sun irradiation, respectively, making it among the best copper sulphide-based solar evaporators reported so far. This Cu9S5/PVDFM evaporator is reusable, flexible, highly efficient, easy to prepare, easy to scale up, and controllable for tailoring, showing a promising future for interfacial solar vapor generation.

Graphical abstract: A plasmonic interfacial evaporator for high-efficiency solar vapor generation

Article information

Article type
Paper
Submitted
04 Aug 2018
Accepted
09 Oct 2018
First published
18 Oct 2018

Sustainable Energy Fuels, 2018,2, 2762-2769

Author version available

A plasmonic interfacial evaporator for high-efficiency solar vapor generation

F. Tao, Y. Zhang, K. Yin, S. Cao, X. Chang, Y. Lei, D. Wang, R. Fan, L. Dong, Y. Yin and X. Chen, Sustainable Energy Fuels, 2018, 2, 2762 DOI: 10.1039/C8SE00402A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements