Issue 8, 2018

On skin microrelief and the emergence of expression micro-wrinkles

Abstract

Over the course of a life time, as a result of adaptive mechanobiological processes (e.g. ageing), or the action of external physical factors such as mechanical loading, the human skin is subjected to, and hosts complex biophysical processes. These phenomena typically operate through a complex interplay, that, ultimately, is responsible for the evolutive geometrical characteristics of the skin surface. Wrinkles are a manifestation of these effects. Although numerous theoretical models of wrinkles arising in multi-layered structures have been proposed, they typically apply to idealised geometries. In the case of skin, which can be viewed as a geometrically complex multi-layer assembly, it is pertinent to question whether the natural skin microrelief could play a significant role in conditioning the characteristics of compression-induced micro-wrinkles by acting as an array of geometrical imperfections. Here, we explore this question through the development of an anatomically-based finite strain parametric finite element model of the skin, represented as a stratum corneum layer on top of a thicker and softer substrate. Our study suggests that skin microrelief could be the dominant factor conditioning micro-wrinkle characteristics for moderate elastic modulus ratios between the two layers. Beyond stiffness ratios of 100, other factors tend to overwrite the effects of skin microrelief. Such stiffness ratio fluctuations can be induced by changes in relative humidity or particular skin conditions and can therefore have important implications for skin tribology.

Graphical abstract: On skin microrelief and the emergence of expression micro-wrinkles

Article information

Article type
Paper
Submitted
02 Oct 2017
Accepted
02 Jan 2018
First published
02 Jan 2018

Soft Matter, 2018,14, 1292-1300

On skin microrelief and the emergence of expression micro-wrinkles

G. Limbert and E. Kuhl, Soft Matter, 2018, 14, 1292 DOI: 10.1039/C7SM01969F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements