Issue 23, 2018

Polymorphism of stable collagen fibrils

Abstract

Collagen fibrils are versatile self-assembled structures that provide mechanical integrity within mammalian tissues. The radius of collagen fibrils vary widely depending on experimental conditions in vitro or anatomical location in vivo. Here we explore the variety of thermodynamically stable fibril configurations that are available. We use a liquid crystal model of radial collagen fibril structure with a double-twist director field. Using a numerical relaxation method we show that two dimensionless parameters, the ratio of saddle-splay to twist elastic constants k24/K22 and the ratio of surface tension to chiral strength [small gamma, Greek, tilde]γ/(K22q), largely specify both the scaled fibril radius and the associated surface twist of equilibrium fibrils. We find that collagen fibrils are the stable phase with respect to the cholesteric phase only when the reduced surface tension is small, [small gamma, Greek, tilde] ≲ 0.2. Within this stable regime, collagen fibrils can access a wide range of radii and associated surface twists. Remarkably, we find a maximal equilibrium surface twist of 0.33 rad (19°). Our results are compatible with corneal collagen fibrils, and we show how the large surface twist can explain the narrow distribution of corneal fibril radii. Conversely, we show how small surface twist is required for the thermodynamic stability of tendon fibrils in the face of considerable polydispersity of radius.

Graphical abstract: Polymorphism of stable collagen fibrils

Article information

Article type
Paper
Submitted
23 Feb 2018
Accepted
16 May 2018
First published
18 May 2018

Soft Matter, 2018,14, 4772-4783

Polymorphism of stable collagen fibrils

S. Cameron, L. Kreplak and A. D. Rutenberg, Soft Matter, 2018, 14, 4772 DOI: 10.1039/C8SM00377G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements