Field-induced dipolar attraction between like-charged colloids
Abstract
The field induced anisotropic interactions between like-charged colloidal particles is studied using direct numerical simulations, where the polarization of the electric double layer is explicitly computed under external AC electric fields. These interactions are found to depend on the magnitude E0 and frequency ω of the applied field, as well as the zeta potential, the Debye length, and the relative orientation of the particles. We also determined the range of E0 and ω over which a dipolar attraction is induced between a pair of like-charged colloids. Finally, we performed simulations for systems of six and twelve colloidal particles to study the stability of pear-chain-like configurations.
- This article is part of the themed collection: Electrostatics and Soft Matter