Issue 29, 2018

Influence of surfactants of different nature and chain length on the morphology, thermal stability and sheet resistance of graphene

Abstract

The effects of surfactants of different nature (anionic, cationic and non-ionic) and chain length on the morphology, microstructure, thermal stability and electrical resistivity of liquid exfoliated graphene (G) were investigated. Microscopic (SEM and AFM) observations revealed that the thickness of G in the dispersions depended on the surfactant nature: non-ionic surfactants rendered the highest level of exfoliation, whilst dispersions in the cationic ones exhibited fully-covered thicker sheets; the flake thickness increased with increasing surfactant chain length. X-ray diffraction studies indicated an increased interlamellar G spacing with increasing surfactant content. Raman spectra showed an increase in the ID/IG ratio with decreasing G loading. Larger upshifts of the G, 2D and D + G bands were found with increasing surfactant concentration, particularly for dispersions in the cationic surfactants. For the same G/surfactant weight ratio, the electrical resistivity of the dispersions followed the order: cationic > non-ionic > anionic, consistent with the amount of surfactant adsorbed onto G calculated via TGA. It is demonstrated herein that the thermal and electrical properties of liquid exfoliated G can be tuned by varying the surfactant concentration, nature and chain length, which is of great importance for numerous applications like solar power harvesting, high-temperature devices and flexible nanoelectronics.

Graphical abstract: Influence of surfactants of different nature and chain length on the morphology, thermal stability and sheet resistance of graphene

Supplementary files

Article information

Article type
Paper
Submitted
17 May 2018
Accepted
23 Jun 2018
First published
25 Jun 2018

Soft Matter, 2018,14, 6013-6023

Influence of surfactants of different nature and chain length on the morphology, thermal stability and sheet resistance of graphene

A. M. Díez-Pascual, C. Vallés, R. Mateos, S. Vera-López, I. A. Kinloch and M. P. S. Andrés, Soft Matter, 2018, 14, 6013 DOI: 10.1039/C8SM01017J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements