Issue 31, 2018

Temperature-regulated protein adsorption on a PNIPAm layer

Abstract

In immunosensors, antibody orientation is a key factor that determines the sensitivity of a device. To date much effort has been devoted to exploring strategies for the direct control of the orientation of antibodies immobilized on a bioactive surface, but less attention has been paid to controlling the orientation of intermediate proteins (though usually used when immobilizing antibodies), which may greatly limit the sensitivity of immunological activities. Therefore, it is of great significance to seek novel methods for controlling protein orientation. Here, we design a new strategy for controlling protein orientation. The main idea is to bind proteins to a ligand-functionalized poly(N-isopropylacrylamide) (PNIPAm) layer, and then the protein orientation can be mediated by environmental temperature. The theory predicts that the protein orientation can show unexpected triple-thermo-responsive behavior. Based on the fraction of ligand adsorbed by the protein, the reponsive behavior can be either complete adsorption or partial adsorption, which is determind by the polymer's surface coverage and the protein's properties. We expect that the present strategy can enrich the methods for controlling intermediate protein orientation and can guide the design of novel immunosensors with superior sensitivity.

Graphical abstract: Temperature-regulated protein adsorption on a PNIPAm layer

Supplementary files

Article information

Article type
Paper
Submitted
18 May 2018
Accepted
14 Jul 2018
First published
16 Jul 2018

Soft Matter, 2018,14, 6521-6529

Temperature-regulated protein adsorption on a PNIPAm layer

C. Feng, Y. Liu and C. Ren, Soft Matter, 2018, 14, 6521 DOI: 10.1039/C8SM01024B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements