Issue 2, 2018

A crystal engineering approach for scalable perovskite solar cells and module fabrication: a full out of glove box procedure

Abstract

In the present work we used some crystallization trends which could be classified as a Crystal Engineering (CE) approach, for deposition of a pure cubic-phase thin film of CH3NH3PbI3 (MAPbI3) on the surface of a mesoporous TiO2 layer. Accordingly, by using the CE approach, we fabricated high efficiency perovskite solar cells (PSCs) and perovskite solar modules (PSMs) utilizing several Hole Transport Layers (HTLs). We optimized the sequential deposition method, developing the entire realization procedure in air. The results show that the CE approach remarkably improved the device performance reaching a power conversion efficiency of 17%, 16.8% and 7% for spiro-OMeTAD, P3HT and HTL free (direct contact of the perovskite layer with the gold layer) PSCs, respectively. Furthermore, perovskite solar modules (active area of 10.1 cm2), which are fabricated by the CE approach, could reach an overall efficiency of 13% and 12.1% by using spiro-OMeTAD and P3HT as HTLs, respectively. The sealed modules showed promising results in terms of stability maintaining 70% of the initial efficiency after 350 hours of light soaking at the maximum power point.

Graphical abstract: A crystal engineering approach for scalable perovskite solar cells and module fabrication: a full out of glove box procedure

Supplementary files

Article information

Article type
Paper
Submitted
13 Sep 2017
Accepted
28 Nov 2017
First published
28 Nov 2017

J. Mater. Chem. A, 2018,6, 659-671

A crystal engineering approach for scalable perovskite solar cells and module fabrication: a full out of glove box procedure

N. Yaghoobi Nia, M. Zendehdel, L. Cinà, F. Matteocci and A. Di Carlo, J. Mater. Chem. A, 2018, 6, 659 DOI: 10.1039/C7TA08038G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements