Two- and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices
Abstract
Due to its superior electronic, thermal, and mechanical properties, graphene is considered to be the most promising candidate for constructing energy storage and conversion devices. One important way to exploit the potential of graphene is to create graphene composites with other functional materials. Graphene-based hybrid composites (GHCs) have been fabricated by incorporating inorganic and/or organic species into graphene through covalent and/or noncovalent interactions. Different methods of fabrication resulted in different properties of GHCs. So far, GHCs have found wide applications in various sectors. In this article, recent progress and achievements in the preparation of two- and three-dimensional GHCs are reviewed, followed by detailed discussions on their physical, chemical, and mechanical properties. The article then focuses on the detailed applications of GHCs in energy storage and conversion devices.
- This article is part of the themed collection: Recent Review Articles