Issue 2, 2018

Controllable synthesis of 3D hierarchical Co3O4 nanocatalysts with various morphologies for the catalytic oxidation of toluene

Abstract

Three-dimensional (3D) hierarchical Co3O4 nanocatalysts with different morphologies and various exposed crystal planes were synthesized via a hydrothermal process without the use of a cobalt surfactant precursor and subsequent direct thermal decomposition. The morphologies obtained include 3D hierarchical cube-stacked Co3O4 microspheres (C sample), 3D hierarchical plate-stacked Co3O4 flowers (P sample), 3D hierarchical needle-stacked Co3O4 double-spheres with an urchin-like structure (N sample), and 3D hierarchical sheet-stacked fan-shaped Co3O4 (S sample), which exhibit high efficiency for the total oxidation of volatile organic compounds (VOCs). Among them, the C sample exhibits the best activity with the temperature required for achieving a toluene conversion of 90% (T90%) of approximately 248 °C and the activity energy (Ea) of 80.2 kJ mol−1, which is at least 32 °C lower than that of the S sample with a higher Ea of 114.9 kJ mol−1 at a space velocity (WHSV) of 48 000 mL g−1 h−1. The effects of morphology on the physicochemical properties and catalytic activity of the Co3O4 catalysts are investigated using numerous analytical techniques. It is concluded that the large specific surface area, highly defective structure with abundant surface adsorbed oxygen species and rich high valence Co ions in the C sample are responsible for its excellent catalytic performance. Moreover, no significant decrease in catalytic efficiency is observed over 120 h at 255 °C on the C sample, which indicates that it exhibits excellent stability for toluene oxidation. Therefore, it shows potential as a non-noble catalyst in practical applications.

Graphical abstract: Controllable synthesis of 3D hierarchical Co3O4 nanocatalysts with various morphologies for the catalytic oxidation of toluene

Supplementary files

Article information

Article type
Paper
Submitted
17 Oct 2017
Accepted
29 Nov 2017
First published
29 Nov 2017

J. Mater. Chem. A, 2018,6, 498-509

Controllable synthesis of 3D hierarchical Co3O4 nanocatalysts with various morphologies for the catalytic oxidation of toluene

Q. Ren, S. Mo, R. Peng, Z. Feng, M. Zhang, L. Chen, M. Fu, J. Wu and D. Ye, J. Mater. Chem. A, 2018, 6, 498 DOI: 10.1039/C7TA09149D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements