Issue 3, 2018

Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries

Abstract

Room-temperature-operable all-solid-state Na-ion batteries (ASNBs) using sulfide Na-ion solid electrolytes (SEs) are promising because of their potential for greater safety, lower cost, and acceptable performance. Despite extensive developments in the area of sulfide Na-ion SEs, their poor chemical stability and prospects for wet-chemical synthesis have been overlooked to date. Herein, the scalable synthesis of Na3SbS4via aqueous-solution routes using precursors of Na2S, Sb2S3, and elemental sulfur for ASNBs is described. With no concerns about the evolution of toxic H2S gas, the aqueous-solution-synthesized Na3SbS4 exhibits high ionic conductivities (0.1–0.2 mS cm−1 at 25 °C). Importantly, the homogeneity of the aqueous solutions enables the creation of uniform Na3SbS4 coatings on FeS2. Fe2S/Na–Sn ASNBs, employing the aqueous-solution-synthesized Na3SbS4 and the Na3SbS4-coated FeS2 for the SE layer and positive electrode, respectively, demonstrate a high charge capacity of 256 or 346 mA h g−1 with good reversibility at 30 °C, highlighting their potential for practical applications.

Graphical abstract: Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries

Supplementary files

Article information

Article type
Communication
Submitted
20 Oct 2017
Accepted
17 Dec 2017
First published
18 Dec 2017

J. Mater. Chem. A, 2018,6, 840-844

Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries

T. W. Kim, K. H. Park, Y. E. Choi, J. Y. Lee and Y. S. Jung, J. Mater. Chem. A, 2018, 6, 840 DOI: 10.1039/C7TA09242C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements