Particle and nanofiber shaped conjugated microporous polymers bearing hydantoin-substitution with high antibacterial activity for water cleanness†
Abstract
Efficient elimination of widespread microbial contamination in water is of great importance to address severe environmental issues. Herein, we demonstrate a new strategy for fabricating novel CMPs-based antibacterial agents by covalently introducing hydantoin groups into CMPs networks (named as CMPH). The resulting CMPH show excellent physicochemical stability, large specific surface areas (up to 1411 m2 g−1) and high antibacterial activity (completely inhibiting growth of bacteria at 100 μg mL−1 dispersion concentration in 120 min). To our knowledge, this is the first example of a CMPs-based antibacterial agent. Furthermore, the CMPH can not only be fabricated as monolithic nanoporous foam, but also can be loaded on diverse porous substrates to fabricate cost-effective sterilization materials, showing great potentials for their practical applications in water cleanness. More importantly, the findings of this study may open a versatile route for design and fabrication of CMPs-based antibacterial materials by the facile introduction of diverse of antibacterial substituents into CMPs building blocks followed by a simple one-pot reaction.