Issue 14, 2018

Ultralong hydroxyapatite nanowire-based layered catalytic paper for highly efficient continuous flow reactions

Abstract

Herein, we report a new kind of highly flexible hydroxyapatite nanowire (HAPNW)-based layered catalytic paper with a high thermal stability, excellent fire resistance, and high catalytic efficiency for continuous flow catalysis. A simple process has been developed for preparing and loading gold nanoparticles (AuNPs) on the fire-resistant HAPNW paper to obtain the HAPNW/AuNP layered catalytic paper. Oleic acid molecules adsorbed on the surface of HAPNWs can effectively reduce Au(III) ions to Au nanoparticles in situ in aqueous solution in the absence of an additional reducing reagent at room temperature. The size and weight percentage of AuNPs and surface hydrophilicity/hydrophobicity of the HAPNW/AuNP layered catalytic paper can be controlled. Benefiting from the nanoporous network and nanowire-based layered structure, the HAPNW/AuNP layered catalytic paper exhibits high catalytic activity for continuous flow reactions when the aqueous solution flows through the paper. Additionally, the HAPNW/AuNP layered catalytic paper can be easily recycled. Importantly, the HAPNW/AuNP layered catalytic paper shows excellent nonflammable properties and high catalytic stability after heat treatment. The HAPNW/AuNP layered catalytic paper has a high catalytic efficiency (100%), good recyclability, long-term stability, and high thermal stability in the continuous flow catalytic reduction of 4-nitrophenol. Furthermore, the catalytic degradation of organic dyes is also investigated. The HAPNW/AuNP layered catalytic paper is promising for applications in water treatment and high-temperature catalysis. In addition, the fire-resistant HAPNW-based paper can be used as an excellent support for various catalysts to prepare other kinds of catalytic paper for many applications.

Graphical abstract: Ultralong hydroxyapatite nanowire-based layered catalytic paper for highly efficient continuous flow reactions

Supplementary files

Article information

Article type
Paper
Submitted
24 Dec 2017
Accepted
22 Feb 2018
First published
14 Mar 2018

J. Mater. Chem. A, 2018,6, 5762-5773

Ultralong hydroxyapatite nanowire-based layered catalytic paper for highly efficient continuous flow reactions

Z. Xiong, Z. Yang, Y. Zhu, F. Chen, R. Yang and D. Qin, J. Mater. Chem. A, 2018, 6, 5762 DOI: 10.1039/C7TA11215G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements