Fast Li+ diffusion in interlayer-expanded vanadium disulfide nanosheets for Li+/Mg2+ hybrid-ion batteries†
Abstract
Li+/Mg2+ hybrid-ion batteries (LMIBs) have attracted intensive attention because they can circumvent some serious drawbacks of Li- and Mg-rechargeable batteries. In this work, a novel LMIB was proposed that uses a VS2 nanosheet-based cathode and an all-phenyl complex + LiCl/tetrahydrofuran hybrid electrolyte. Combined spectroscopic analysis and theoretical simulations revealed that (phenyl)2Mg and tetrahydrofuran inserted into the nanosheets at an early battery-cycling stage. The interlayer spacing of VS2 was expanded from 5.78 to 8.76 Å by the inserted organic species, which significantly reduced the diffusion barrier of Li+. As a result, the LMIBs showed remarkable battery performance with a large discharge capacity (181 mA h g−1 at 50 mA g−1), high rate capability (93 mA h g−1 at 5 A g−1), and long cycle stability (0.04% capacity fading per cycle in 500 cycles).