Issue 16, 2018

A scalable ternary SnO2–Co–C composite as a high initial coulombic efficiency, large capacity and long lifetime anode for lithium ion batteries

Abstract

A new ternary SnO2–Co–C composite is produced using a facile and scalable ball milling method, which has a microstructure that includes refined SnO2–Co hybrids embedded in graphite. The Co additives dramatically inhibit Sn coarsening in the lithiated SnO2, which enables highly reversible conversion reactions in the SnO2-based ternary composite during cycling. The electrodes exhibit high ICEs with an average of 80.8% and a reversible capacity of 780 mA h g−1 at 0.2 A g−1 after 400 cycles when the composite was manufactured via small planetary ball milling, and they achieve 875 mA h g−1 after 250 cycles when the material is prepared on a large-scale with a roller mill. Even at a high rate of 2 A g−1, the composite has a long lifetime and delivers 610 mA h g−1 after 1000 cycles. Furthermore, a stable capacity of 410 mA h g−1 can be also retained in a full cell combined with a LiFePO4 cathode and SnO2–Co–C anode when cycling within 2.3–3.4 V at 0.2C. The new ternary SnO2–Co–C composite demonstrates excellent comprehensive electrochemical performances, and it is a promising candidate anode material for use in practical applications.

Graphical abstract: A scalable ternary SnO2–Co–C composite as a high initial coulombic efficiency, large capacity and long lifetime anode for lithium ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
29 Jan 2018
Accepted
21 Mar 2018
First published
21 Mar 2018

J. Mater. Chem. A, 2018,6, 7206-7220

A scalable ternary SnO2–Co–C composite as a high initial coulombic efficiency, large capacity and long lifetime anode for lithium ion batteries

T. Liang, R. Hu, H. Zhang, H. Zhang, H. Wang, Y. Ouyang, J. Liu, L. Yang and M. Zhu, J. Mater. Chem. A, 2018, 6, 7206 DOI: 10.1039/C8TA00957K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements