Issue 29, 2018

Graphitization induced by KOH etching for the fabrication of hierarchical porous graphitic carbon sheets for high performance supercapacitors

Abstract

Porous graphitic carbons are promising candidates for energy conversion and storage. At present, it is highly desired but remains challenging to construct high-surface-area hierarchical porous graphitic carbons. Herein, graphitic carbon nanosheets with hierarchical pores are easily fabricated from a multifunctional carbonaceous precursor (pentaerythritol melamine phosphate or PMP). The PMP carbonaceous precursor can be readily converted into a 3D macroporous scaffold enclosed by carbon nanosheets via chemical foaming without any sacrificial templates and special drying procedures. Then a subsequent potassium hydroxide chemical activation process dramatically increases the surface area (up to 3853 m2 g−1) and porosity (up to 2.79 cm3 g−1). Simultaneously, graphitization of the carbon nanosheets was promoted with increased aromaticity and size of the polyaromatic units via breaking the phosphate ester bonds with KOH etching at a temperature as low as 800 °C. The resulting porous graphitic carbon nanosheets are constructed with an interconnected continuous three-dimensional network surrounded by predominantly multilayer sp2-bonded carbon with a dense nanometer scale pore structure. Due to such synergistic features, the resulting porous graphitic carbon nanosheets deliver 188 F g−1 specific capacitance and excellent rate performance in nonaqueous electrolytes.

Graphical abstract: Graphitization induced by KOH etching for the fabrication of hierarchical porous graphitic carbon sheets for high performance supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
05 Feb 2018
Accepted
21 Jun 2018
First published
02 Jul 2018

J. Mater. Chem. A, 2018,6, 14170-14177

Graphitization induced by KOH etching for the fabrication of hierarchical porous graphitic carbon sheets for high performance supercapacitors

F. Qi, Z. Xia, R. Sun, X. Sun, X. Xu, W. Wei, S. Wang and G. Sun, J. Mater. Chem. A, 2018, 6, 14170 DOI: 10.1039/C8TA01186A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements