Issue 17, 2018

Microwave-assisted synthesis of graphene-like cobalt sulfide freestanding sheets as an efficient bifunctional electrocatalyst for overall water splitting

Abstract

Total water splitting provides an appealing pathway for clean and sustainable energy conversion and storage. Therefore, development of a noble metal-free, efficient and robust electrocatalyst simultaneously towards the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) is still a great challenge. Herein, an ultrafast and scalable method was introduced to synthesize CoSx non-layered and freestanding nanosheets via microwave-assisted liquid-phase growth of a Co(OH)2 precursor post-sulfurized at room temperature. The planar sheet area was up to several micrometres and exhibited an ultrathin thickness (<1 nm) with a mesoporous feature. Hence, the highly exposed surface atoms afforded high electrochemical activity, whereas the ultrathin and mesoporous features facilitated charge and mass transfer along the 2D nanostructure to efficiently perform the surface-dependent electrochemical reactions: HER, OER, and the overall water splitting. Notably, the amorphous CoSx presented a low overpotential (η10) of 127 mV to deliver a current density of 10 mA cm−2 for HER. During the OER process, the surface of Co9S8 (annealed CoSx) was mainly in situ oxidized to form CoOOH; this suggested CoOOH/Co9S8 as the real form of the catalyst that exhibited excellent OER activity with a low overpotential (η10) of 288 mV to afford 10 mA cm−2. Impressively, the assembled overall water electrolyzer required a cell voltage of 1.55 V to achieve a current density of 20 mA cm−2 in 1 M KOH with excellent stability. Predominantly, our synthesis strategy is cost-effective and scalable to break the synthesis challenge of transition-metal-sulfide ultrathin nanosheets with high quality and suggests a possibility for commercial applications.

Graphical abstract: Microwave-assisted synthesis of graphene-like cobalt sulfide freestanding sheets as an efficient bifunctional electrocatalyst for overall water splitting

Supplementary files

Article information

Article type
Paper
Submitted
06 Feb 2018
Accepted
25 Mar 2018
First published
27 Mar 2018

J. Mater. Chem. A, 2018,6, 7592-7607

Microwave-assisted synthesis of graphene-like cobalt sulfide freestanding sheets as an efficient bifunctional electrocatalyst for overall water splitting

R. Souleymen, Z. Wang, C. Qiao, M. Naveed and C. Cao, J. Mater. Chem. A, 2018, 6, 7592 DOI: 10.1039/C8TA01266K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements