Issue 22, 2018

Metal–organic framework-derived Zn0.975Co0.025S/CoS2 embedded in N,S-codoped carbon nanotube/nanopolyhedra as an efficient electrocatalyst for overall water splitting

Abstract

The development of high-efficiency, low-cost and stable bifunctional electrocatalysts for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is extremely crucial to promote sustainable energy technologies, yet remains a long and arduous challenge. In this work, Zn and Co bimetallic zeolitic imidazolate framework (ZnCo-ZIF) templates were used to synthesize Zn0.975Co0.025S/CoS2 nanoparticles embedded in N,S-codoped carbon nanotube/nanopolyhedra (ZnCoS-NSCNT/NP) via a facile two-step method. Benefitting from the synergetic effect of two metal sulfide species, mesoporous polyhedral structure, N,S-codoped carbon matrix and deep-rooted CNT networks, the product exhibits excellent catalytic performance for both the HER and OER in 1 M KOH, affording a low overpotential of 270 mV for the OER and 152 mV for the HER at a current density of 10 mA cm−2. More importantly, by utilizing ZnCoS-NSCNT/NP as the electrocatalyst for both the cathode and anode in an electrolyzer for overall water splitting, a current density of 10 mA cm−2 at 1.59 V and long-term durability (40 h) were achieved. This work opened a new possibility for exploring non-precious-metal catalysts for overall water splitting.

Graphical abstract: Metal–organic framework-derived Zn0.975Co0.025S/CoS2 embedded in N,S-codoped carbon nanotube/nanopolyhedra as an efficient electrocatalyst for overall water splitting

Supplementary files

Article information

Article type
Paper
Submitted
08 Feb 2018
Accepted
28 Apr 2018
First published
01 May 2018

J. Mater. Chem. A, 2018,6, 10441-10446

Metal–organic framework-derived Zn0.975Co0.025S/CoS2 embedded in N,S-codoped carbon nanotube/nanopolyhedra as an efficient electrocatalyst for overall water splitting

Z. Yu, Y. Bai, S. Zhang, Y. Liu, N. Zhang and K. Sun, J. Mater. Chem. A, 2018, 6, 10441 DOI: 10.1039/C8TA01370E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements