Issue 38, 2018

Orientation of photosystem I on graphene through cytochrome c553 leads to improvement in photocurrent generation

Abstract

We report the fabrication of an oriented bioelectrode of photosystem I (PSI) on single-layer graphene (SLG). This bioelectrode demonstrates improved photocurrent generation, which can be directly attributed to the molecular conductive interface formed by cytochrome c553 (cyt c553) promoting the uniform orientation of PSI with its donor side towards the electrode. The conductive interface between PSI-cyt c553 and SLG is facilitated by a monolayer composed of π–π-stacked pyrene functionalized with the Ni-NTA moiety, which binds the His6-tagged cyt c553. The surface uniformity of the PSI protein orientation in the electrode structure is evidenced by cross-sectional scanning electron microscopy and fluorescence microscopy, with the latter also proving the efficient electronic coupling between majority of the PSI complexes and graphene. With the uniform organization of the biological photoactive layer, photocurrents are generated at the open circuit potential, which can be further increased when a negative potential is applied. Indeed, at the highest applied negative potential (−0.3 V), over 5-fold increase in the cathodic photocurrent for the PSI complexes conjugated via cyt c553 to the SLG substrate is observed compared with that obtained for the randomly oriented structure where PSI is physisorbed on graphene. These results indicate the key role of a strictly defined orientation of photoactive proteins on electrodes for proper electron transfer and substantial improvement in photocurrent generation in the present or similar bioelectrode architectures.

Graphical abstract: Orientation of photosystem I on graphene through cytochrome c553 leads to improvement in photocurrent generation

Supplementary files

Article information

Article type
Paper
Submitted
15 Mar 2018
Accepted
28 Aug 2018
First published
29 Aug 2018

J. Mater. Chem. A, 2018,6, 18615-18626

Orientation of photosystem I on graphene through cytochrome c553 leads to improvement in photocurrent generation

M. Kiliszek, E. Harputlu, M. Szalkowski, D. Kowalska, C. G. Unlu, P. Haniewicz, M. Abram, K. Wiwatowski, J. Niedziółka-Jönsson, S. Maćkowski, K. Ocakoglu and J. Kargul, J. Mater. Chem. A, 2018, 6, 18615 DOI: 10.1039/C8TA02420K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements