Issue 27, 2018

Dual carbon-protected metal sulfides and their application to sodium-ion battery anodes

Abstract

Metal sulfides are considered as promising anode materials for sodium ion batteries owing to their good redox reversibility and relatively high theoretical capacity. However, their cycle life and rate capability are still unsatisfactory because of poor conductivity and a large volume change during the discharge/charge processes. A facile method for preparing dual carbon-protected metal sulfides is reported. Metal diethyldithiocarbamate complexes are used as precursors. The synthesis only involves a co-precipitation of metal diethyldithiocarbamate complexes with graphene oxide and a subsequent thermal pyrolysis. As an example, N-doped carbon-coated iron sulfides wrapped in the graphene sheets (Fe1−xS@NC@G) are prepared and used as the anode material for a sodium ion battery. The as-synthesized Fe1−xS@NC@G electrode exhibits a high reversible capacity (440 mA h g−1 at 0.05 A g−1), outstanding cycling stability (95.8% capacity retention after 500 cycles at 0.2 A g−1), and good rate capability (243 mA h g−1 at 10 A g−1). Coupled with a Na3V2(PO4)2@C cathode, the full battery exhibits a high capacity retention ratio of 96.5% after 100 cycles and an average output voltage of ca. 2.2 V. More importantly, the proposed synthesis route is universal and can be extended to fabricate diverse transition metal sulfide-based composites with a dual carbon-protected nanostructure for advanced alkali ion batteries.

Graphical abstract: Dual carbon-protected metal sulfides and their application to sodium-ion battery anodes

Supplementary files

Article information

Article type
Paper
Submitted
15 Apr 2018
Accepted
13 Jun 2018
First published
13 Jun 2018

J. Mater. Chem. A, 2018,6, 13294-13301

Dual carbon-protected metal sulfides and their application to sodium-ion battery anodes

X. Zhu, D. Liu, D. Zheng, G. Wang, X. Huang, J. Harris, D. Qu and D. Qu, J. Mater. Chem. A, 2018, 6, 13294 DOI: 10.1039/C8TA03444C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements