Issue 39, 2018

Efficient intermediate-temperature steam electrolysis with Y : SrZrO3–SrCeO3 and Y : BaZrO3–BaCeO3 proton conducting perovskites

Abstract

Ceramic proton conductors have the potential to become important components in future clean and efficient energy technologies. In this manuscript, barium cerium yttrium zirconate (Ba(Zr0.5Ce0.4)8/9Y0.2O2.9) and strontium cerium yttrium zirconate (SrZr0.5Ce0.4Y0.1O2.95), proton conducting perovskites were employed as solid oxide electrolysis cell (SOEC) electrolytes for hydrogen production via intermediate temperature steam electrolysis at 550 and 600 °C. Cathode-supported button cells examined for a 12 μm Ba(Zr0.5Ce0.4)8/9Y0.2O2.9 electrolyte, with Ni–SrZr0.5Ce0.4Y0.1O2.95 as the H2-electrode, and porous Ba0.5La0.5CoO3 as the anode reached current densities of 0.2 and 0.5 A cm−2 with applied voltage of 1.45 V, at 550 and 600 °C, respectively. Moreover, a hydrogen evolution rate of 127 μmol cm−2 per minute was achieved at 0.5 A cm−2, translating to a current efficiency of 82%. In addition, excellent cell performance was obtained using SrZr0.5Ce0.4Y0.1O2.95 as an electrolyte. Current densities of 0.2 and 0.5 A cm−2 were obtained at 600 °C with applied voltages of 1.28 and 1.63 V, achieving faradaic current efficiencies of 88 and 85%. The NiO–SrZr0.5Ce0.4Y0.1O3−δ composite cathode was more favorable for the densification of the supported Ba(Zr0.5Ce0.4)8/9Y0.2O2.9 electrolyte during sintering and could be promising for use as a cathode substrate in proton-conducting SOECs.

Graphical abstract: Efficient intermediate-temperature steam electrolysis with Y : SrZrO3–SrCeO3 and Y : BaZrO3–BaCeO3 proton conducting perovskites

Supplementary files

Article information

Article type
Paper
Submitted
01 May 2018
Accepted
18 Sep 2018
First published
20 Sep 2018

J. Mater. Chem. A, 2018,6, 19113-19124

Efficient intermediate-temperature steam electrolysis with Y : SrZrO3–SrCeO3 and Y : BaZrO3–BaCeO3 proton conducting perovskites

K. Leonard, Y. Okuyama, Y. Takamura, Y. Lee, K. Miyazaki, M. E. Ivanova, W. A. Meulenberg and H. Matsumoto, J. Mater. Chem. A, 2018, 6, 19113 DOI: 10.1039/C8TA04019B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements