Issue 33, 2018

Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis

Abstract

Bifunctional electrocatalysts that can boost energy-related reactions are urgently in demand for pursual of dual and even multiple targets towards practical applications such as energy conversion, clean fuel production and pollution treatment. Herein, we highlight that an in situ grown nickel–iron layered double hydroxide (NiFe LDH) nanosheet array catalyst with partially amorphous characteristics, rich native Ni3+ ions and an optimal Ni : Fe ratio can exhibit robust performances on both the oxygen evolution reaction (OER) and the urea oxidation reaction (UOR). Benefitting from the partially amorphous feature, the catalytically active high-valence species are easy to generate and stabilize, thus further realizing enhanced electrooxidation activity with the aid of an internal 2D charge transfer pathway and native Ni3+ ions. As expected, the partially amorphous catalyst exhibits a higher OER current of 284.4 mA cm−2 at an overpotential of 500 mV, which shows 2.2–10.0 times enhancement than the counterparts with various Ni : Fe ratios. In addition, the UOR current density of the partially amorphous catalyst at 1.8 V vs. RHE shows 1.6 and 2.4 times increment relative to fully amorphous and highly crystalline catalysts, and 2.7–9.4 fold larger than the catalysts with other Ni : Fe ratios. The optimization strategy of designing the partially amorphous bifunctional catalyst in this work may broaden the way of searching for advanced electrocatalysts for simultaneous waste water treatment and clean energy production.

Graphical abstract: Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis

Supplementary files

Article information

Article type
Paper
Submitted
30 May 2018
Accepted
20 Jul 2018
First published
21 Jul 2018

J. Mater. Chem. A, 2018,6, 16121-16129

Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis

J. Xie, H. Qu, F. Lei, X. Peng, W. Liu, L. Gao, P. Hao, G. Cui and B. Tang, J. Mater. Chem. A, 2018, 6, 16121 DOI: 10.1039/C8TA05054F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements