Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants†
Abstract
In this work, phase boundary engineered cerium oxide–cerium nitride (CeO2/CeN) is synthesized and used as a high performance photocatalyst for photo-thermocatalytic degradation of organic pollutants in wastewater. A CeO2/CeN composite is obtained through simply annealing CeO2 nanowires under an ammonia atmosphere. Both theoretical and experimental analyses are used to study the interfacial interaction between CeO2 and CeN crystallites. Benefiting from the interface engineering, the as-prepared CeO2/CeN composite exhibits higher photo-thermocatalytic performance than pristine CeO2 for the removal of organic pollutants. Electron spin resonance (ESR) spectroscopy and liquid chromatography tandem mass spectrometry analysis of intermediates and products are used to further confirm the synergetic effect and degradation mechanism of the photo-thermocatalysis reactions. The results of this work suggest that the synergetic effect of the photo-thermal reaction can be considered as one of the most efficient strategies for environmental pollution remediation.