The introduction of a perovskite seed layer for high performance perovskite solar cells†
Abstract
Processing for obtaining compact and uniform perovskite photoactive layers has been intensively studied over the last few years to achieve high power conversion efficiencies (PCEs) in solar cells. Particularly, high quality crystal growth of perovskite layers is critical to enhance device performance. We demonstrate an easy and effective new process for high efficiency p–i–n planar heterojunction structures of perovskite solar cells (PeSCs) by using a compact seed perovskite layer (CSPL). The CSPL assists vertical growth of perovskite crystals and obtains the highly crystalline perovskite photoactive layer, which leads to the reduction in the charge transfer resistance and a longer photoluminescence lifetime. The PeSC device with a CSPL shows a remarkably improved PCE, from 15.07% to 19.25%, with a record open circuit voltage (VOC) of 1.16 V in the p–i–n structure with pure crystal perovskite and negligible current density–voltage hysteresis. Additionally, a PCE of 20.37% was achieved in CSPL assisted n–i–p structure PeSCs.