Issue 46, 2018

CO2 electrolysis in seawater: calcification effect and a hybrid self-powered concept

Abstract

Oceans are regarded as a sink for anthropogenic CO2; as such seawater provides an attractive electrolyte for electrochemical CO2 reduction to value-added carbon-based fuels and chemical feedstocks. However, the composition of seawater is inherently complex, containing multiple cations and anions that may participate in the CO2 electroreduction reaction. Herein, examination of a nanoporous Ag electrocatalyst in seawater reveals a significant influence of calcium ions on the electrochemical CO2 reduction performance. Under the applied cathodic potential and in the presence of CO2, calcium ions in the seawater result in calcium carbonate deposition onto the nanoporous Ag, reducing active sites for CO2 electroreduction. Mitigation of calcification would promote a stable CO2 electrolysis in seawater. A first proof-of-concept self-powered hybrid CO2 electrolysis is demonstrated by the coupling of a Mg anode to a nanoporous Ag cathode in 0.6 M NaCl or seawater. A spontaneous oxidation of a Mg alloy at the anode drives cathodic reduction of AgCl to nanoporous Ag, which electrocatalytically reduces CO2 to CO. Combining galvanic and electrolytic properties in a single electrochemical cell offers a general approach for designing hybrid self-powered electrolysers. Strategies to overcome calcification such as removal of calcium from the seawater and development of anti-calcifying electrocatalysts are needed to promote practicability of seawater as an electrolyte in CO2 electroreduction technology.

Graphical abstract: CO2 electrolysis in seawater: calcification effect and a hybrid self-powered concept

Supplementary files

Article information

Article type
Communication
Submitted
27 Sep 2018
Accepted
07 Nov 2018
First published
07 Nov 2018

J. Mater. Chem. A, 2018,6, 23301-23307

CO2 electrolysis in seawater: calcification effect and a hybrid self-powered concept

C. Lee and G. G. Wallace, J. Mater. Chem. A, 2018, 6, 23301 DOI: 10.1039/C8TA09368G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements