Issue 15, 2018

AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer

Abstract

DOX-loaded magnetic alginate–chitosan microspheres (DM-ACMSs) were developed as a model system to evaluate alternating magnetic field (AMF)-responsive, chemo-thermal synergistic therapy for multimodality postsurgical treatment of breast cancer. This multimodality function can be achieved by the combination of DOX for chemotherapy, with superparamagnetic iron oxide nanoparticles (SPIONs) as magnetic hyperthermia agents and drug release trigger. Both moieties are encapsulated in ACMSs which also allow on-demand drug release. It is demonstrated that the optimized SPION content in DM-ACMSs is about 0.29 mg Fe, at which DM-ACMSs could exhibit the best hyperthermia performance. Under a remote AMF, DM-ACMs can quickly reach a 22.5% cumulative drug release in the tumor site within 10 min upon exposure under AMF, whereas only 0.2% DOX is released in the absence of AMF. Furthermore, a comparison study of AMF and water bath as heating source indicates that the cumulative drug release amount upon AMF exposure is twice that by water bath heating. Further analysis revealed that the AMF stimulated drug release is driven by both thermal and concentration gradient from inside to outside, which can be well-described by the coupling mechanism of mass and heat transfer using the Soret diffusion model. In vitro cytotoxicity tests on MCF-7 breast cancer cells show that the combined therapy based on DM-ACMSs leads to 95.5% cell death, about 1.5-fold and 1.1-fold higher than that of single magnetic hyperthermia or chemotherapy, respectively. The in vivo anti-tumor effect on tumor-bearing mice demonstrates that the residual tumor disappears in 12 days after chemo-thermal synergistic treatment using DM-ACMSs, and there is no recurrence in the entire experiment period (40 days) as compared to 25 days recurrence for single-modality treatment. Our results not only provide an innovative DM-ACMSs system as a stimuli-responsive, synergistic chemo-thermal therapy platform for efficient reduction in the recurrence of breast cancer, but also provide insight into the intricate interplay of the functional components in magnetic hydrogel microspheres.

Graphical abstract: AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer

Supplementary files

Article information

Article type
Paper
Submitted
12 Dec 2017
Accepted
13 Mar 2018
First published
15 Mar 2018

J. Mater. Chem. B, 2018,6, 2289-2303

AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer

W. Xue, X. Liu, H. Ma, W. Xie, S. Huang, H. Wen, G. Jing, L. Zhao, X. Liang and H. M. Fan, J. Mater. Chem. B, 2018, 6, 2289 DOI: 10.1039/C7TB03206D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements