Issue 18, 2018

A fluorescence and colorimetric dual-mode assay of alkaline phosphatase activity via destroying oxidase-like CoOOH nanoflakes

Abstract

Nanozymes are increasingly exploited as components in bioanalysis and diagnostics. Here, we report a fluorescence and colorimetric dual-mode assay for alkaline phosphatase (ALP) activity employing oxidase-like cobalt oxyhydroxide (CoOOH) nanoflakes. Colorless o-phenylenediamine (OPD), a substrate for oxidase, can be oxidized to a product (OxOPD) with yellow color and orange fluorescence in a CoOOH nanoflake solution. But, ascorbic acid (AA) is able to reduce CoOOH to cobalt ion (Co2+), which causes the decomposition and collapse of the CoOOH nanoflakes, and thereby the CoOOH nanoflakes are deprived of the oxidase-like property. Based on this principle, the fluorescence and colorimetric dual-mode detection of AA was achieved. Alkaline phosphatase (ALP) can make L-ascorbic acid-2-phosphate (AAP) hydrolyze to yield AA. As a result, with the help of AAP, the selective and sensitive dual-mode assay of ALP activity has been realized successfully by using fluorescence and UV-vis absorption spectroscopies. Quantitative analysis of ALP in human serum samples and an ALP inhibitor investigation were performed using this sensing system. Given the economical and sensitive properties, the proposed method based on CoOOH nanoflakes has great potential for not only probing ALP activity in biological systems but also screening potential ALP inhibitors. Meanwhile, in this study, a new insight has been provided into the application of CoOOH nanoflakes in the development of sensitive and convenient sensors.

Graphical abstract: A fluorescence and colorimetric dual-mode assay of alkaline phosphatase activity via destroying oxidase-like CoOOH nanoflakes

Supplementary files

Article information

Article type
Paper
Submitted
20 Dec 2017
Accepted
10 Apr 2018
First published
12 Apr 2018

J. Mater. Chem. B, 2018,6, 2843-2850

A fluorescence and colorimetric dual-mode assay of alkaline phosphatase activity via destroying oxidase-like CoOOH nanoflakes

S. G. Liu, L. Han, N. Li, N. Xiao, Y. J. Ju, N. B. Li and H. Q. Luo, J. Mater. Chem. B, 2018, 6, 2843 DOI: 10.1039/C7TB03275G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements