Issue 20, 2018

Biocompatible fluorescent carbon quantum dots prepared from beetroot extract for in vivo live imaging in C. elegans and BALB/c mice

Abstract

Luminescent carbon quantum dots (CQDs) prepared from aqueous beetroot extract were developed as unique fluorescent nanomaterials for in vivo live animal imaging applications. Blue (B) and green (G) emitting environmentally benign CQDs (particle size of 5 nm and 8 nm, respectively) exhibited bright fluorescence in aqueous medium and were found to be biocompatible, photostable and non-toxic in animal models. The in vivo imaging and toxicity evaluation of both CQDs were performed for the first time in the Caenorhabditis elegans (C. elegans) model, which revealed consistent fluorescence in the gut tissues of the worms without exerting any sign of toxic effects on the nematodes. The in vivo bio-distribution of G-CQDs given by tail vein injection in live BALB/c mice showed optical signals in the lower abdominal regions, mainly in the intestine, and cleared from the body through faeces. The tremendous potential shown by these eco-friendly CQDs in the C. elegans and mice models advocates new hopes for greener CQD nanomaterials as diagnostic tools in the biomedical field.

Graphical abstract: Biocompatible fluorescent carbon quantum dots prepared from beetroot extract for in vivo live imaging in C. elegans and BALB/c mice

Supplementary files

Article information

Article type
Paper
Submitted
22 Feb 2018
Accepted
19 Apr 2018
First published
20 Apr 2018

J. Mater. Chem. B, 2018,6, 3366-3371

Biocompatible fluorescent carbon quantum dots prepared from beetroot extract for in vivo live imaging in C. elegans and BALB/c mice

V. Singh, K. S. Rawat, S. Mishra, T. Baghel, S. Fatima, A. A. John, N. Kalleti, D. Singh, A. Nazir, S. K. Rath and A. Goel, J. Mater. Chem. B, 2018, 6, 3366 DOI: 10.1039/C8TB00503F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements