Issue 26, 2018

Octahedral molybdenum clusters as radiosensitizers for X-ray induced photodynamic therapy

Abstract

The use of radiosensitizers recently emerged as a promising approach to circumvent the depth penetration limitations of photodynamic therapy of cancer and to enhance radiotherapeutical effects. A widely explored current strategy is based on complex nanoarchitectures that facilitate the transfer of energy harvested from X-ray radiation by scintillating nanoparticles to the surrounding photosensitizer molecules to generate reactive oxygen species, mostly singlet oxygen O2(1Δg). We describe an alternative approach aiming at a considerable simplification of the architecture. The presented nanoparticles, made of the luminescent octahedral molybdenum cluster compound (n-Bu4N)2[Mo6I8(OCOCF3)6], efficiently absorb X-rays due to the high content of heavy elements, leading to the formation of the excited triplet states that interact with molecular oxygen to produce O2(1Δg). The activity of the nanoparticles on HeLa cells was first investigated under UVA/blue-light irradiation in order to prove the biological effects of photosensitized O2(1Δg); there is no dark toxicity at micromolar concentrations, but strong phototoxicity in the nanomolar range. The nanoparticles significantly enhance the antiproliferative effect of X-ray radiation in vitro at lower concentration than for previously reported O2(1Δg) radiosensitizing systems and this effect is more pronounced on cancer HeLa cells than non-cancer MRC cells. The results demonstrate that the cluster-based radiosensitizers of O2(1Δg) have strong potential with respect to the enhancement of the efficacy of radiotherapy with exciting opportunities for cancer treatment.

Graphical abstract: Octahedral molybdenum clusters as radiosensitizers for X-ray induced photodynamic therapy

Supplementary files

Article information

Article type
Paper
Submitted
03 Apr 2018
Accepted
09 Jun 2018
First published
11 Jun 2018

J. Mater. Chem. B, 2018,6, 4301-4307

Octahedral molybdenum clusters as radiosensitizers for X-ray induced photodynamic therapy

K. Kirakci, J. Zelenka, M. Rumlová, J. Martinčík, M. Nikl, T. Ruml and K. Lang, J. Mater. Chem. B, 2018, 6, 4301 DOI: 10.1039/C8TB00893K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements