Issue 28, 2018

A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy

Abstract

In this study, a novel drug delivery system (HMSNs-SS-HA) based on hollow mesoporous silica nanoparticles (HMSNs) was developed for delivering anticancer drugs (e.g., doxorubicin (DOX)) to targeted tumour cells by using disulfide bonds as redox-sensitive linkers and hyaluronic acid (HA) molecules as both capping and targeting agents. Well-dispersed HMSNs were synthesized with a dimension of around 100 nm. Detailed physical characterization further demonstrated that HMSNs-SS-HA has been successfully constructed. The in vitro drug release experiments displayed the enzyme and redox dual-responsive and sustained drug release properties of DOX loaded HMSNs-SS-HA. Additionally, a series of biological evaluations indicated that these DOX loaded HMSNs-SS-HA could accurately target murine mammary carcinoma (4T1) cells to induce cell apoptosis in vitro and suppress tumour growth in vivo. These results demonstrated that DOX loaded HMSNs-SS-HA was suitable as a potential and efficient drug delivery nanosystem for cancer therapy.

Graphical abstract: A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy

Supplementary files

Article information

Article type
Paper
Submitted
16 Apr 2018
Accepted
18 Jun 2018
First published
20 Jun 2018

J. Mater. Chem. B, 2018,6, 4618-4629

A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy

L. Huang, J. Liu, F. Gao, Q. Cheng, B. Lu, H. Zheng, H. Xu, P. Xu, X. Zhang and X. Zeng, J. Mater. Chem. B, 2018, 6, 4618 DOI: 10.1039/C8TB00989A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements