A ratiometric fluorescent composite nanomaterial for RNA detection based on graphene quantum dots and molecular probes†
Abstract
RNA plays a central role in controlling cellular functions. Research of the content and distribution of RNA in living cells is of great significance to both biochemistry and biomedicine. However, ratiometric fluorescent probes for the detection of RNA in the cytoplasm and nucleoli are still rarely reported. We herein present the first example of a novel ratiometric fluorescent composite nanomaterial by using graphene quantum dots (GQDs) and a fluorescent probe molecule for the sensitive and selective detection of RNA. HVC-6 was selected as the detection group. The fluorescence was excited at 365 nm and the fluorescence emission at 470 and 610 nm increased gradually with the addition of RNA. The fluorescence intensity ratio of I610/I470 displayed a linear response to RNA. Furthermore, the developed nanomaterial HVC-6@GQDs showed potential for utilization as a fluorescent RNA probe in living cells.