Issue 35, 2018

Muscle-derived extracellular matrix on sinusoidal wavy surfaces synergistically promotes myogenic differentiation and maturation

Abstract

The generation of physiologically aligned multinucleated myotubes is critical in the fabrication of functional engineered skeletal muscle. Although micro-/nano-topographical contact guidance, such as groove/ridge structures, has induced the alignment of muscle fibers by providing cells with extracellular matrix (ECM) topography, the complex biochemical microenvironment of the ECM cannot be recapitulated. Here, we report the enhancement of myogenic differentiation and maturation using muscle decellularized ECM (mdECM) and sinusoidal wavy surfaces, which provided a biochemical microenvironment and microscale contact guidance, respectively. Sinusoidal wavy polystyrene surfaces with wavelengths of 20, 40, and 80 μm were fabricated by a deep X-ray lithography-based process. The mdECM was prepared by decellularization of porcine tibialis anterior skeletal muscle. An mdECM coating significantly improved the surface wettability of polystyrene substrates and exhibited higher seeding efficiency, cell viability, and proliferation compared with collagen- and non-coating cases. The sinusoidal wavy surfaces induced well-aligned myotubes and showed significantly enhanced formation of myotubes and myogenic differentiation when the surface was coated with mdECM. Particularly, there was an approximately 1.5–2 fold improvement in morphological analysis and gene expression for mdECM-compared to non-coated sinusoidal wavy surfaces. These results suggest that the consideration of both topographical and biochemical environmental cues can generate a highly mimicked ECM environment, thereby providing cells with a synergistic effect on myogenic differentiation and maturation. The outcome of this study will be useful in developing of functional engineered muscle for application in tissue regeneration or a high-throughput in vitro model for drug screening.

Graphical abstract: Muscle-derived extracellular matrix on sinusoidal wavy surfaces synergistically promotes myogenic differentiation and maturation

Supplementary files

Article information

Article type
Paper
Submitted
05 Jun 2018
Accepted
29 Jul 2018
First published
02 Aug 2018

J. Mater. Chem. B, 2018,6, 5530-5539

Muscle-derived extracellular matrix on sinusoidal wavy surfaces synergistically promotes myogenic differentiation and maturation

Y. Choi, S. J. Park, H. Yi, H. Lee, D. S. Kim and D. Cho, J. Mater. Chem. B, 2018, 6, 5530 DOI: 10.1039/C8TB01475B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements