Hypoxia-triggered gene therapy: a new drug delivery system to utilize photodynamic-induced hypoxia for synergistic cancer therapy†
Abstract
The therapeutic effects of photodynamic therapy (PDT) are limited by cancer hypoxia because the PDT process is dependent on O2 concentration. Based on this, a new living drug delivery system integrated PDT and hypoxia-triggered gene therapy is proposed, which is made up of three primary constituents: hypoxia-induced cleaved azobenzene (Azo) bridges, HIF-1α-against antisense oligonucleotide (ASO)/G4-constituted double-stranded DNA/RNA hybridization complex (DRHC) and the photosensitizer TMPyP4. During PDT, the continuous consumption of oxygen could remarkably facilitate an intracellular low-oxygen microenvironment. Then, the hypoxia-responsive Azo bridges were reduced by the highly expressed reductases to amines under the oxygen-deficient environment, resulting in a hypoxia-triggered ASO release and providing a synergistic therapy with PDT for suppression of tumor growth. This new drug delivery system opens a new avenue for the design and fabrication of smart drug delivery methods, which can deliver and release drugs according to the specific biological microenvironment in the body.